Wastholm.com

Quantum computers are fundamentally different from classical computers because the physics of quantum information is also the physics of possibility. Classical computer memories are constrained to exist at any given time as a simple list of zeros and ones. In contrast, in a single quantum memory many such combinations—even all possible lists of zeros and ones—can all exist simultaneously. During a quantum algorithm, this symphony of possibilities split and merge, eventually coalescing around a single solution. The complexity of these large quantum states made of multiple possibilities make a complete description of quantum search or factoring a daunting task.

I had a discussion recently with friends about the various depictions of space combat in science fiction movies, TV shows, and books. We have the fighter-plane engagements of Star Wars, the subdued, two-dimensional naval combat in Star Trek, the Newtonian planes of Battlestar Galactica, the staggeringly furious energy exchanges of the combat wasps in Peter Hamilton's books, and the use of antimatter rocket engines themselves as weapons in other sci-fi. But suppose we get out there, go terraform Mars, and the Martian colonists actually revolt. Or suppose we encounter hostile aliens. How would space combat actually go?

"I'm not an economist, and I am approaching the economy as a physics problem," Garrett says. "I end up with a global economic growth model different than they have."

Garrett treats civilization like a "heat engine" that "consumes energy and does 'work' in the form of economic production, which then spurs it to consume more energy," he says.

"If society consumed no energy, civilization would be worthless," he adds. "It is only by consuming energy that civilization is able to maintain the activities that give it economic value. This means that if we ever start to run out of energy, then the value of civilization is going to fall and even collapse absent discovery of new energy sources."

Garrett says his study's key finding "is that accumulated economic production over the course of history has been tied to the rate of energy consumption at a global level through a constant factor."

Public understanding of major achievements of the Space Age over the past 30 years -- carried out by both the former Soviet Union and the United States -- increasingly seems to have been nothing more than a carefully constructed "version" of a much more extraordinary truth.

The bird dropped some bread on a section of outdoor machinery, eventually leading to significant over heating in parts of the accelerator. The LHC was not operational at the time of the incident, but the spike produced so much heat that had the beam been on, automatic failsafes would have shut down the machine.

Crank Dot Net is devoted to presenting Web sites by and about cranks, crankism, crankishness, and crankosity. All cranks, all the time.

A simple method for rating potentially revolutionary contributions to physics:

Just when you thought invisibility cloaks couldn't get any weirder, researchers come up with this: a way to make one object look like any other.

The Schwarzschild geometry describes the spacetime geometry of empty space surrounding any spherical mass. Karl Schwarzschild derived this geometry at the close of 1915, within a few weeks of Albert Einstein publishing his fundamental paper on the Theory of General Relativity.

Our universe is perfectly tailored for life. That may be the work of God or the result of our universe being one of many.

|< First   < Previous   21–30 (35)   Next >   Last >|